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SUMMARY 

 
In this report, thermophysical characterization of a set of test specimens 
adopting MiniFuel geometries is described. Specific heat capacity and 
thermal diffusivity of metallic samples (copper, 304 stainless steel, and 
Inconel 600) and two nuclear fuel samples (UO2 and U3Si2) are measured. 
The primary aim is to validate and assess the feasibility of thermophysical 
characterization of fuels with MiniFuel geometries that will be irradiated at 
the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory 
(ORNL).  
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1. INTRODUCTION 

Ongoing efforts within the Advanced Fuels Campaign (AFC) have involved synthesis and 
characterization of accident tolerant fuels (ATF). Uranium silicide (U3Si2) has been proposed as a 
candidate material as it offers enhanced thermal conductivity (this reduces the propensity for 
thermal stress failures) and a uranium density that is higher than conventional uranium dioxide 
fuels, which can enhance the economic viability of nuclear power plant operation. Nevertheless, 
full elucidation of the thermophysical properties of U3Si2 at peak operating temperatures is 
necessary for any potential implementation in the current nuclear energy infrastructure.   

For nuclear energy applications, development of U3Si2 thermophysical properties databases 
must include pre and post-irradiation scenarios. Prior efforts, conducted at Los Alamos National 
Laboratory (LANL), supported by the AFC have yielded detailed assessments of unirradiated 
U3Si2 thermophysical properties at temperatures up to 1500 °C [1]. However, conducting similar 
measurements on irradiated fuel specimens poses numerous challenges. Primarily, irradiated 
samples are highly radioactive and can make handling prohibitively expensive. Additionally, full 
scale integral effects testing of fuel yields multiple coupled intrinsic properties that are difficult to 
deconvolute. To address these problems, experimental designs (Figure 1) have been developed 
and realized at Oak Ridge National Laboratory (ORNL) to conduct irradiation experiments on 
miniature fuel (MiniFuel) specimens at the High Flux Isotope Reactor (HFIR) [2]. The proposed 
dimensions for the MiniFuel design are diameters ~3 mm and thickness less than or equal to 300 
µm. 

A test plan is currently being carried out at LANL to fabricate fresh nuclear fuel specimens 
with MiniFuel scale geometries [3]. Concurrently, the viability of characterizing thermophysical 
properties will be evaluated, given the size restraints imposed by miniature scale geometries. 
Recently, thermal diffusivity has been validated on miniature W specimens using a “Hyper Flash” 
thermal analyzer [4]. In this report, the heat capacity and thermal diffusivity (using more 
conventional techniques) on standard metallic samples (copper, 304 stainless steel, and Inconel 
600) adopting MiniFuel geometries are also described. The metals were chosen to provide a range 
of thermal diffusivity values to assess feasibility of the LFA system at LANL. Preliminary 
thermophysical characterization on a MiniFuel UO2 and U3Si2 specimens are also discussed. 
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Figure 1: MiniFuel irradiation test setup developed at ORNL [2].  
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2. Experimental Setup 
 

2.1 Specimen Synthesis and Fabrication 
MiniFuel copper, 304 stainless steel, and Inconel 600 pellets (3 mm diameters and ~300 µm 

thickness) were fabricated from stock material using a wire electrical discharge machine (EDM)—
see Figure 2 a-c. For UO2, a previously synthesized 3 mm pellet with ~400 µm thickness was used 
for initial testing of a nuclear fuel specimen. A MiniFuel U3Si2 pellet (Figure 2 d) was made via 
powder (~0.25 wt% of ethylene-bisstearamide was added as binder) originating from an arc-melted 
button, where it was processed in an Ar glovebox line with oxygen content was maintained below 
30 ppm. The powder was sieved to achieve a particle size less than or equal to 45 µm and ~0.10-
0.15 g was loaded to a 3 mm punch and die set and pressed to ~300 MPa to form a pellet. The 
green pellet was loaded in W metal furnace enclosed within the glovebox line and sintered at 1460-
1470 °C for 12 h in an Ar atmosphere. Geometric measurements on the as sintered pellet showed 
a diameter of ~2.8 mm and a thickness of ~1 mm. The pellet was then ground to ~255 µm thickness 
using 400-grit SiC paper. Masses and thicknesses of all samples are summarized in Table 1.  

 

 
Figure 2: (a-c) Metallic samples cut into MiniFuel geometries using a wire EDM. (d) U3Si2 MiniFuel 
samples processed at LANL. The black surfaces on the Cu and stainless steel specimens originate from 
graphite coating need for LFA measurements. 
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Table 1: Summary of measured masses and thickness of fabricated pellets. 

Specimen Mass [mg] Thickness [µm]; ± 1 µm 
Cu 18.10 294 
304 stainless steel 16.79 304 
Inconel 600 16.34 316 
U3Si2 18.95 255 
UO2 25.59 400 

 
 
 

2.2 Differential Scanning Calorimetry (DSC) 
Specific heat capacities of MiniFuel specimens were determined via the ratio method using 

differential scanning calorimetry adhering to the ASTM E1269 standards. (DSC; Pegasus 404C, 
Netzsch Instruments, Germany). Samples in the calorimeter were contained in Pt pans lined with 
Al2O3 to prevent pan-specimen reactions at higher temperatures (temperature was raised to 700 °C 
at a rate of 20 °C/min). An Ar atmosphere was maintained during the DSC measurements, where 
it was flowed through a Cu getter to reduce oxygen concentration in the sample chamber to ~10-1 
to 1 ppm O.  

 

2.3 Laser Flash Analysis (LFA) 
Room-temperature thermal diffusivity was measured using laser flash analysis (LFA; LFA 

427, Netzsch Instruments, Germany). Specimens were loaded into the LFA using a machined 
graphite fixture designed to accommodate MiniFuel geometries (Figure 2). A pulsed laser (0.30 
ms pulse width) heats the lower surface of the sample and temperature change on the upper surface 
is then measured by an infrared detector. Thermal diffusivity can then be inferred from sample 
thickness and the time measured to reach half-maximum temperature change (t1/2) by fitting the 
temperature rise signal with a modified Cowan model [5, 6]. The upper and lower surfaces of the 
samples were coated with graphite (Graphit 33, Kontakt Chemie, Germany) to improve emissivity 
and energy absorption from the laser pulse, respectively (the added graphite had minimal impact 
on thickness as no appreciable mass change in coated pellets was detected). Samples were pulsed 
with the laser 10 times for improved statistics.  
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Figure 3: (a) Fabricated LFA fixture designed to accommodate MiniFuel specimens. (b) Fixture-specimen 
assembly mounted on the LFA instrument. 
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3. Results and Discussion 
 

3.1 Specific Heat Capacity 
Reference and measured specific heat capacities up to 700 °C of Cu, Inconel 600, and U3Si2 

are shown in Figure 4. Overall, heat capacities stayed relatively constant with increasing 
temperature (one must note, however, the narrow temperature range). In comparison with the 
literature (obtained from a standards library in the DSC instrument for the metallic samples and 
the HSC database for U3Si2), data for U3Si2 and Inconel 600 were below the reference trends. 
Conversely, the measured Cu specific heat capacities were consistently higher than the reference. 
The discrepancies illustrates the difficulty in extracting heat capacity values from low mass 
miniature samples, where DSC signal to noise ratio is relatively low and thus can reduce the 
precision of heat capacity calculations. This problem is magnified for heavier actinide samples, 
which generally have low specific heat capacities. Nevertheless, there are feasible engineering 
solutions that will be explored that include using smaller specimen crucibles that may aid in 
reducing background signals. 

 

 
Figure 4: Measured and reference specific heat capacities of Cu, Inconel 600, and U3Si2 plotted against temperature.  
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3.2 Room-Temperature Thermal Diffusivity 
 

Room-temperature thermal diffusivity data for all specimens tested are listed in Table 1. A 
large discrepancy is observed in Cu, which is known to have a high thermal conductivity. Here, 
measured values are an order of magnitude lower than the reference thermal diffusivity. 
Nevertheless, differences between measured and reference room-temperature thermal diffusivities 
become smaller as the thermal conductivity of the specimen decreases. It is important to note, 
however, that thermal conductivities will change with temperature variations, where the behavior 
is dictated by the nature of the material. Interestingly, measured thermal diffusivity of U3S2 at 
room temperature closely matches previously measured values [1].  

 
The inconsistencies observed in the thermal diffusivities are tied to the underlying principles 

of the laser flash method. Infrared signals emitted after sample heating are relatively low at room 
temperature, which can give rise to large variations in measured thermal diffusivities (infrared 
signal generally improves with increasing temperature). Additionally, an accurate measurement 
requires a laser pulse width that is faster than the diffusion time of heat in a given specimen. It 
follows that very thin samples will quickly diffuse heat and thus require a very narrow laser pulse. 
Generally, the width of the laser pulse must be less than 1/10 of the time to reach half-maximum 
temperature (t1/2) change in the specimen (guideline based on ASTME E1461). The LFA 427 
instrument used in this study has a minimum laser pulse of 0.3 ms. As a result, the minimum t1/2 
value that can theoretically be measured is 3 ms. This is illustrated in Figure 5, which shows the 
temperature rise (inferred by the infrared detector signal) for the U3Si2 MiniFuel specimen. The 
t1/2 value that is extracted from the Cowan model is ~3.6 ms (the model shows reason agreement 
with the measured signal, with a computed R2 value of ~0.99312). This approaches the 
instrumental limitation of the LFA427 system that is available at LANL. Accordingly, the 
minimum thermal diffusivity (αmin) than can measured for a sample with a given thickness (L) can 
be deduced from the Parker equation [7]: 

 
 

𝛼"#$ = 0.1388	 ,
𝐿.

𝑡0/.
2 

 
For a sample with a 300 µm thickness, the minimum thermal diffusivity that can be measured in 
the LFA 427 instrument is ~4.16 mm2/s. Hence, measurements of nuclear fuel materials such as 
U3Si2 are beyond the resolution capable of the instrument that is currently being deployed. Hence, 
accurate measurements of thermal diffusivity on MiniFuel specimens will require laser pulses that 
are at least an order of magnitude less than what is currently available in the LFA 427 instrument.  
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Table 2: Measured room-temperature thermal diffusivities measured via LFA compared with reference 
values. 

Specimen α(measured) [mm2/s] α(reference) [mm2/s] 
Cu 8.733 ± 0.442 111 [9] 
304 stainless steel 5.193 ± 0.106 4.2 [10] 
Inconel 600 5.647 ± 0.255 3.428 [11]  
UO2 8.080 ± 0.134 3.3 [12] 
U3Si2 3.602 ± 0.056 3.6 [1] 

 
 
 

 
 

Figure 5: Infrared detector signal representative of the rise of a U3Si2 MiniFuel sample temperature after 
being exposed to a laser pulse. The time to reach half the maximum temperature change is ~3.6 ms (based 
on the Cowan model), which approaches the instrumental limit (~3 ms) that is capable of being measured 
on the LFA 427. 
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4. Conclusions and Next Steps 
In this report, preliminary results on thermophysical property measurements on miniature test 

specimens are presented. Materials such as Cu, 304 stainless steel, Inconel 600, and U3Si2 have 
been successfully fabricated to MiniFuel geometries. Specific heat capacities measured via 
differential scanning calorimetry (DSC) give deviate from the reported values in the scientific 
literature. Given the limitations of deducing heat capacities of low-mass samples, the initial results 
are expected and may be improved upon by modifying the current DSC setup to accommodate 
miniature specimens. Thermal diffusivities measurements of MinFuel specimens prove to be more 
difficult given the instrument limitation of the laser flash analysis (LFA) setup that is currently 
being used at LANL. Nevertheless, the issue can be addressed by employing a laser that is capable 
of pulses faster than the diffusion of heat in a thin MiniFuel sample. Such lasers are currently 
provided by manufacturers of LFA instruments. 
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